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STATISTICAL MECHANICS OF SOLITONS

Alan Bishop
Theoretical Division, Los Alamos Scientific Laboratory
University of California
Los Alamos, New Maxico 87545
ABSTRACT
We broadly review the status of statistical mechanics theory (classi-
cal and quantum, statics and dynamics) for 1-D soliton or solitary-wave-
bearing systems. Primary attention is given to (i) perspective for existing
results with evaluation and representative literature guide; (ii) motivation
and status report for remaining problems; (i1i) discussion of connections

with other 1-D tcpics represented in the Conference and elsewhere:

A) We introduce a general class of 1-D kink solitary-wave-bearing

Hamﬂtom‘ans1 {x = scaled space, t = scaled time)

x
"

fdx!w; gt VDL (1)

which includes for V the sine Gordon (SG), ¢-four, double-fG, Eshelby, etc.,
potentials. Classical, low-T, static properties are now understood fully

for the whole class (1), including striking universal T-dependencies. Com-
plete agreement is obtained between transfer integral results and a
"phenomenological" approach in terms of an effective gas of independent kinks
and linear phonons -- if a (thermally) renormalized kink energy is used
because of kink-pioron interactions. Static correlations are also described,
emphasizing dependercies on the particular functions being correlated.
Qualitative phenomenology at higher T is discussed since this is most relevant
to topical applicaticns (e.g. talks of J. R. Schrieffer, M. Steiner). Some

modi fications to the gradient coupling term in (1) are needed in, e.g.,

spin models. We discuss these and their effects.



B) Several "phenomenoiogical" schemes for kink-phonon statistical
mechanics have been used in the literature. They all amount %o perturbation
treatments about explicit kink profiles, accommodating "zero-frequency"

2

modes by the introduction of "collective-coordinates."™ These techniques

are illustrated with a 1-D but 2-component order-parameter model, the
ferromagnetic Heisenberg chain with easy-axis an1sotropy.3 We emphasize
the equivalence of all collective coordir te schemes (including that in A)
and discuss their limitations.

C) The status of dynamic car clztien function calculations for class
(1) will be summarized within both Hamiltonian and Fokker-Planck frameworks,
emphasizing strongly nonlinear (soliton) signatures - see also talks of M,
Bittiker and T. Schneider.

D) Kink-solitons and their statistical mecianics (certainly at low-T)
are now very well understood and of 1ittle further irnterest. Much the
most challenging problems remaining cor:ern non-topological pulse or envelope
solitons (of wide physical relevance). We 1liustrate these with the solitons,
of the Toda lattice, a cubic Schrodinger equation, the continuum ferromagnetic
Heisenberg chain, and the SG breather. A very appealing approach is to use
the compiete integrability of these strict soliton systems to transform to
a natura! action-angle variable (soliton) basis. Building on the introduction
of D. W. “claughlin, we investigate this approach to classical statistical
mechanics and describe some generic problems for non-kink solitons.

E) Some of the prohlems in D) can be overcome if we consider quantum
statistical mechanics. We summarize approaches and pertinent results for
strict and non-strict soliton systems - more detailed discussion 1s given by
K. Maki. In particular, we emphasize the quantization scheme for strict

snliton systems due to Fadeev, et al., especially as applied to the X-Y-Z



Heisenberg chain. Connections with Bethe ansatz calculations for spin-k
XYZ chains (see also J. C. Bonner) and other exactly soluble quantum models
(+ exactly integrable quantum models), allows some lessons to be drawn
about soliton statistical mechanics. _

F) Finally, we emphasize the ubiquity of the solitun concept in 1-D
physics by noting its connections with so many 1-D problems (experimental

and theoretical) discussed at this Conference and elsewhere.

1) J. F. Currie, J. A. Krunhansl, A. R. Bishop, S. E. Trullinger, Phys.
Rev. B, in press (1980); R. M. De Leonardis and S. E. Trullinger,
preprint (1980).

2) e.g. J. €. Langer, Adv. Phys. 14, 108 (1967).

3) A. R. Bishop, K. Nakamura, T. Sasada, preprint (1980).

4) e.g. E. K. Sklyanin, L. D. Faddeev, Sov. Phys. fhokl. 23, 902 (1978).



STATISTICAL MECHANICS OF SOLITONS

Alan Bishop
Theoretical Division, Los Alamos Scientific Laboratory
University of California
Los Alamcs, New Mexico 87545

1. Introduction

I was asked to talk about the statistical mechanics (SM) of solitons (in 1-D).
This is an almost open-ended brief -- indeed the "soliton" concept is one of
the major unifying threads of low-D physics. Fortunately, at this Conference
there are a number of inter-related soliton contributions. Here, I have
decided to (i) indicate natural connections with other invited papers; (ii)
survey what is known rigorously about soliton SM, what is conjectured, and what
important open questions remain; (1ii) emphasize SM of solitons rather than
of soliton Hamiltonians. By this I mean that I will mostly stress what is
known rigorously about "solitons" as (nonlinear) elementary modes. [ contrast
this with purely numerical results {(e.g. from the transfer integral operator
(TIO) or molecular dynamics (MD)) without interpretation or with approximate
mode interpretations -- these are hopefully useful for experimental guidance
and will be surveyed by SCHNEIDER. I will omit any discussion of dynamics
here. Little is known rigorously; the many interesting questions concerning
aralytic, numerical or phenomenological approaches in Hamiltonian or Langevin
frameworks will be surveyed by BUTTIKER and SCHNEIDER.

2. Representative Models

It would be inappropriate to restrict ourselves to solitons in the strict
mathematical sense (see McLAUGHLIN): the soliton paradigm is far more per-
vasive [1,2]. Nevertheless, strict solitons systems are valuable test models
and also of deep interest to the mathematical physicist. We include several
below:

A. Nonlincur Klein-Gordon (KG) cluss: Sustained attention has been given
[1-3] to this class of nonlinear Hamiltonians supprrting kink-soliton eacita-
tions. The general Hamiltonian is defined on a dimensionless one-component
field (¢,) (lettice sites labelled by {n}) and has the form

= ZAE;% 11’2‘ + %cgg-z(‘l'n+1""n)2 + mgv(d,n)i . (1)

A sets the energy scale and % is the lattice spacing. The continuum (or
"displacive") limit (co/mo »+ 2) is especially attractive theoretically:

;o ﬁx,% 12(x,t) + % cf) ¢:(x.t) N mﬁV(d')t ) (2)

In efther (1) or (2) the local potential V() 1s the sole source of nonlin-



earity. Its only restriction 1s that it have at least two degenerate minima
(at say ¢ = ¢, ,), with (for simplicity) local symmetry about the minima.
This is suffilfént to admit a topologically stable kink solution to the
equation of motion from (2):

¢ - c§¢xx + wg dv/de = 0. (3)

The single-kink (or antikink) excitation translating yitg ye1ocity v carries
the field from ¢, o to ¢,  over a distance = d(1 - Y c5)4 (d = co/wg), and
1s found easiiy *“[1-3].° The single kink energx E { §Xhibit§ the game
“F81§t1Viét§°" dfasndencez(implicit in (3}):2 ) ="g(0 (1 g,v /c?)'ll

E +pct; E = Mecos p= Mv(l - /co)“ M, = /8 Adf¢ dolvie) ),
subh kink sS]utioﬁs are 'if striking contrast to familiar i+ small ampli-
tude (<<|¢]-¢2|). approximate, harmonic ("linear phonon") solutions

¢(x,t) - ¢y o = exp[i(kx-mkt)] with cortinuum (Debye) dispersion

o =0l w Ak = 201+ dAP), (4)
The nonlinear KG class contains several examples which have long been prac-
tice models for "soliton" SM. For example the "sine-Gordon" (SG)

[V(¢) =1 - cos¢] is (effectively) considered in [4] and this and other peri-
odic 1ncal potentials are studied in [5] (such as the Eshelby form

V(¢) = (l?l - 122, periodically continued). Again the “¢-four" form [6]

V(¢) = (¢2 - 1)°/8 is the most familiar of Landau ¢ <pansions but many other
such unbounded potentials are studied, as are potentials supporting several
kink types, e.g. tha "doubie SG" [7). The important recent developments
(§83,4) are the proof of an exact kink statistical mechanics at low tempera-
ture (T), ana of 1ts validity for the whole class {2). (Differences between
periodic and unbounded potentials arc important at high-T or for dynamics.)
The discrete lattice (c.f. (1)) also su‘rorts harmcnic modes (with a trivi-
ally modified dispersion [1,2])and kinks, but these interact increasingly
strongly as d/2 decreases. Conveniently, however, many low v kink properties
(e.g. energy, width) are only weakly aftec*ed unless d ~ 2[8].

One other excitation must bLe mentioned. Awniizrmonics perturbation theory
about ¢ suggests a tendency towards the farmation of spatially and tem-
porally ’“coherent excitations:particle-1ike envelopes with an oscillatory
internal motion. We refer to thase generically as "breathers", (Indeed
Tinear SG wave-trains are modulationally unstable to breather formation.)
They are observed in MD simulations of |-four or SG, and in deterministic
simulations of several members of class (2) (corresponding to strong anhar-
monic efrects as well as weak ones)., Breathers are fundamentally ditferent
from kinks and lie at the heart of the interesting open areas in soliton SM.
Breather., ¢g, are only known (McLAUGHLIN) analytically in class (2) for SG,
in which integrable (&5) case they in principle exhaust the "anharmonic pho-
non" spectlrum:

=1 . 2, 72\~'
dg(xat; VB'“B'*o‘*o) = 4 tan”'yy, where (y = (1 vB/co) ’)
1

o)’ v (£)
(aﬁT - 1) Sinlrmu(t - Lg’ (x - xoa -oqc]

U'“ = 1
cosh[yd"@ - X " vBt)(l - mB’/mo’) ,]




B. Multi-component generalizations: A number of generalizations of class A
to multi-component fields have been studied. These are immediately relevant
for problems with multi-component order parameters, leading to coupled non-
linear equations. Kink and other soliton solutions are known (sometimes
analytically) for many of these but little has been accomplished in incor-
porating them in a SM theory at the level we will report for class A. Two
exceptions should be noted. First, the Heisenberg ferromagnet with Ising
anisotropy, see C. Second, a natvral generalization of class A to a complex
order parameter with 2-fold symmctry breaking (see [9,10]) exhibits both
¢-four and SG-like kinks and a mean field bifuration. SM of this model has
revealed a possible role for an additional non-tunological excitation indica-
ted in numerical simulations [10].

C. The Heisenberg ferromagnet and relations: Spin Hamiltonians (classical
and quantum) have gained renewed attention from soliton devotees in recent
years for several reasons. Models of easy-plane ferro- or anti-ferromagnets
vith easy-plane magnetic fields (STEINER) have mostly been limited to SG
approximations (possibiy with periodic coupling, c.f. (1) ([11,12); §3.2).

More generally we will refer here to the classical Heisenberg-Ising-XY Hamil-
tonian

~ - . - z Z
H= - ‘Jzn:sn sn+1 - Azn:snsnﬂ * (6)

where {8 } are classical spin-vectors $ = S{sin"_ cos:! , sini' sini c05“n)
(13| = 8). The Landau equations of mofion are 88/dt 1 (3,$}7 The"exchanfe
anigotropy in (6) might be replaced or supplemented with local anisotropy,

e.g. AZ(Sﬁ)z. Major interest centers on the complete integrability of (6)

in the " econtinuwm 1imit [12] and of the correspcnding spin-!ly quantum

chain (c.f. 5). Here we simply give the flavor of soliton types by record-
ing a few single-soliton forms w2 need. The continuum ferromagnet with uni-
axial local anisotropy [Hamiltonian density I(x) = - J(1 - a(dg/dx)’) - A(S%)"]
has static n-domain wall solutions [13,11] (distances in lattice shacings)

X=X *i4 X=X
2 _ 0\. LA ‘o "o
§¢ = § tanh (T). S Se sech( g )

st = s* 4 45Y; d = (y/2n)"

(7)

These should be contrasted with familiar spin waves having continuum disper~
sion (c.f. (4))

w, = 2N+ Jk*, (8)

Notice that there are no simple dynamic generalizations of these walls (unlike
(2A)). In fact the natural dynamic modes are emvclope solitons in which

(0,9) are intrinsically coupled. (The same is true for exchange easy-axis
anisotropy.) General expressions are rather cumbersome [12.13? and will not
be given, but the pulse amplitude » n (~ bound wall-antiwall) as its trans-
lation velocity » O. In the isotropic Heisenberg 1imit, the pulse (velocity
v) is



cosb(x,t) = 1 - 2b%sech?[b (x - Xy - vt)]

(9)
o(x,t) = ¢ *+ 0t + (v/235)(x - Xy - vt)

with b =1 - y2/(1JSQ); Q = JSQ. The pulse has energy
E = 16353 |MZ| sin’(§/45). witg linear momentum P = 4S5 sin” 'b and z-component
of angular momentum M“ = -4bSQ™4, Importantly, there 1s a gauge equivalence
[15] between the above continuum spin equations and the continuum nonlinear
(cubic) Schrddinger equation (see McLAUGHLIN). Both systems are completely
integrable (§5) and the envelope soliton solutions to cubic Schrédinger
require four action and angle variables (~x_, v, ¢_, @ in (9)) for specifi-
cation as for SG breathers (5). Amongst 1n?egrab18 Hamiltonians we also
mention the Toda lattice (see McLAUGHLIN). Although a contrived lattice
dynamics, it supports the third typical soliton variety, pulses. In addition
it is certainly the most studied discrete integrable Hamiltonian (c.f. §5).

3. Exact Analytic Results: Transfer Integral Operator (TIQ)
3.1 Statics: Nonlinear KG Class

The TI10, especially as applied to 1-D Hamiltonians with nearest neighbor
counlings (e.g. §2), has a dense history [1,2,6,11,16] with extensive data
(both published and unpublished). Recent attention to soliton p~enomenology
(84) has generally encouraged more analytic investigation, particularly at
low T. We have described the TIO for nonlinear KG Hamiltoniins in detail
elsewhere [1,2]. A few central results will suffice here. We consider the
discretized form (1) and write the olassical partition function Z = Z.Z

2, (2~-A-/:-h-‘)N/2 (10)

Z 1

1

Zexp(-r‘-Aa;Lt n) (11)
n

Here L = N¢ (N = number of lattice sites),h is Planck's constant. The quan-
tities {c,} in the "configurational" (i.e. potential-energy) partition func-
tion expression (11) are the eigenvalues of the TIO [1,2]. The TIO eigen-
functions {{¢n(%))) constitute a complete orthoncrmal set on (-+, +). In
the thermodynamic !imit only the lowest eigenvalue ¢, is important to Z. or,

for instance [2,16], the (potential) free energy density F, = RS ITY
Lo . .
F';—_.A.O(O. (IZ)

Equilibrium correlation functions, however, depenqhon both TI0 eigenvaiues
and functions [2,16]: C.(x) £ -g(:(x))g*(:(0))> =— I |-nig(!),0 "expi-x/Ap)
Here g 1s an arbitrary ?unction of ¢ and the "n-th M correlation lengtn"

Ap = ?HAué(ln-lo)]'l. In some ("kink-sensitive") cases only the first exci-
ted level with non-zero matrix element is important [1,2,17]. In writing
(11) and therefore {12), etc., we have assumed periodic boundary conditions
ON+l T ¢]. These are readily varied within the TIO formalism [2,18] and this
is sometimes physically necessary (e.g. for discommensuration arrays - see
BAK): 2.g. rigid or free bourdaries with a fixed or floating "winding number"
(z(4N=t1)/2n in SG). Thesc considerations will usually not affect intenaiine
quantities such as Fu. Such boundary conditions will of course influence the

kink-antikink density (84).



If we wish to interpret the formally exact TIO results in terms of "ele-
mentary" nonlinear modes (§2A), the displacive 1imit d << & affords most
analytic control. To O(L/d) the TIO can [2,16] be replaced by a Schrédinger-
1ike (h-T) differential eigenvalue equation for ¥(¢) = exp[-!,BLAmsV(q‘)]qh(J

Rlo)v,(e) = € ¥ (4)

13
A(s) = - (2m*)~'d2/de2+ V(¢) + v, (13)

with m* = A%u2clg? = (ﬁu:(o))z and V_ = (28w2%A) " &n(Ac28/2n2). In terms of
experimental app]icab1¥ity we nofe (8] that effects®on eigenvalues from
using (13) instead of the true TIO are at most a few percent unless d < 21.
The two lowest eigenvalues deduced from (13) are shown as a function of T

in fig. (3) of [19]. Note t--t for periodic potentials V(¢) as in SG we have
a band structure problem ((13) is the Mathieu equation for SG), with eigen-
values € labeled by a "band" index n(= 0,1,2,---) and "wave-vector” k in
the firs@'hri]louin zone (- % < k <£%). The corresponding eigenfunctions have
Bloch form [21. Fig. (3) of [19] shows the Towest two characteristic eigen-
values (top and bottom of the first band); these correspond most closely tn
the lowest fU? levels of ¢-four-like models. €_ and €, converge rapidly for
koT £ 0.2 E'g/ (i.e. m* >> 1), Indeed, in this regime, they can be usefully
afalyzed [2,6] as 3nng1-sp1it single-well oscillator levels: €  =E = t.;

B, o= m*= + O(HE(Q ) The tunneling term can be extracted by stanflard

wfs schemes, and for class 2A is found to have a "universal" form giving [2]

Foz - At = - nAwéﬂ-l:(rE(g))-lJexp(-L-‘.E(g)). (14)

n 1s a numerical coefficient depending on the particular V(:): e.g.

v(SG) £ 167 ; n(¢") = 22773, Eq. (14) includes a correction factor to WhB
(=/e)*) common to class 2A (at asymptotic low T) [20]. It should seem

physically plausible that E, 1s related to harmonic (and anharmonic) phonon

modes, and t, to kink configurations. This suggestion [6] is now verified
for all class gA (84).

We will not dwell here on numerical solutions of (13) (or the TIO) for
non-asymptotic (high or low) T regimes. These are straightforward and have
been abundant since at least [16] for class 2A and many of the spin Hamilton-
jans 2C: Renewed in’erest has bheen stimulated by speculations on certain
magnetic chains (cee STEINER). In this context information from the TIO on
eorrclation functions (see below (12)) 1s important. In particular, certain
interesting correlations 1n plenar (classical) anti-ferromagnets are domin-
ated by kink-sensitive functions for which a simple Ising-like kink phenomeno-
logy can be constructed. (Solitons enter through etlgenvalue tunnel-splitting.)
By contrast, corresponding properties in corresponding ferromagnets are
determined from kink-inaenaitive functions, which are dominated by anharmoni-
city, with kinks only entering weakly through a careful eigenfunction study.
Phenomenology is then more difficult. We do not have space to develop these
interesting topics here [1,17].

3.2 Statics: Other Models

Many of the models in 2A-C have been studied via the TIO. Tunnel-splitting
( ~= kink solitons) are not found in the Toda lattice [21,22]. Periodic
nearest-neighbor coupling in §2A is possibly interesting in view of planar



approximations to easy-plane magnetic chains. This 1s considered in detail
in [11]. The SG approximation Ecos(¢ +1°95) > 1 = 4(o -0 )2] is generally
found to be reasonable (for static prgplrths) ir the 21lp19c1ve ragime at
lTow T, with one essential provision. This is that the TIO or (13) are
restricted to the range (-m,m) not (~=, +=). Thus, even in a SG approxima-
tion, we must only use 2m-periodic Mathieu functions, not the whole band
structure. Tk,s has obvious consequences, particularly for correlation
functions since certain previously finite matrix elements in the TIO expres-
sion for Cg(x) (below (12)) may be excluded [11].

TIO applications to coupled scalar field Hamiltonians are also numerous
(e.g. [9,10]). 1In some cases analytic attention to tunnel-splitting features
can be profitable: see for instance [10] for a complex order parameter model
(2B). Spin Hamiltonians (2C) are also extensively documented (see [14]):

We report one example here for later use; the continuum uniaxial Heisenberg
ferromagnetic (c.f. (6) - (9))[14]: Using the TIO formalism, the free energy
density is [14]

F=g"len(pd/2r) - J +¢ (15)
where € _ is the lowest eigenvalue of a (two-variable) "hindered rotator"
transfef matrix eigenvalue equation, which can be transformed into the single-
variable form

o »

d*,(u)/du® + V(u;E)i (u) = 0 (16)
V(u;E) = - u(sEH)’[(E/A) + tanh’u] sech’u.

The eigenvalue problem (16) differs from the Schrddinger form (13), but for
|E, = A (sufficient for eo) a very similar twmncling problem emerges. With the
same low-T WKB approach, we find [14] ¢ -t with Eo = -A[1-4(EEH)'

" o = Eo
+ O(';.Eu)"'] and

to.1;9.4(e/~)d"n(#£u)exp(-%EH)- 7

The factor (g/m) is cancelled by the same WKB corrections which removed the
factor (e/n)¢ for class 2A. The important difference from the one-component
class 2A,is the prefactor Ac, 1n (17?: for clasc 2A this appears universally
as (ﬁEiP))’ (c.f. (14)). Thvs universal feature of class 2A can be under-
stood (¥4) very physically in terms of the phase-shifting effect of kinks

on the extended harmoni: excitations and the related zero-1requency kink
transiation mode. The spin model sigrature RE, can be understood equally
physically (§4), by recognizing two degrees of freedom for fluctuations, and
two symmetries - spin-rotation about the easy-axis as well as translation,

(7).

4. Nonlinear Mode Phercmenology
4.7 Low-T Statics: Non-interacting Kinks

Several equivalent schemes have been described in the last 20 years (e.g.
[5,23,24] which evaluate various statistical properties of models exhibiting
kink-solitons by explicitly recognizing those nonlinear configurations "or
collective co-ordinates". Basically, these schemes are all attempts to build
a "phenomenological" representation of a partition function around non-pertur-
bative steepest descent or saddle-point trajectories. Examples from class 2A



have been popular, but most schemes are more general (below). Typically, an
exact phenomenology is possible at low k,T (<< kink energy) because kink-kink
interactions can be neglected and we on19 need to analyze the effect of a
eingle kink on the harmonic modes. One then finds that "zero-frequency"
modes, neglecting continuous symmetries, play a central role. We begin by
summarizing the approach of CURRIE, et al. [2] since this has been applied

in generality to class 2A, and leads to some more sophisticated ideas in §5.
Complete details can be found in [2]. Extended harmonic wave forms (“phonons")
are modified in the neighborhood (scale d) of a kink and most importantly
their density of states ie changed. This nonlinear feature 1s also central
to perturbation theories and to the treatment of quantum or critical fluctua-
tions about nonlinear configurations. We cen handle the problem relatively
easily because of the assumption of a simple isolated kink. Analyziny Ilineacr
oscillations about a kink is well-known from stqbility theory [2,24]. The
spectrum of small occillations, x(x,t) = f(x)e™'“", comprises both bound
(i.e. spatially~localized) and continuum (i.e. extended) states. Since the
general continuum Hamiltonian (2) 1s translationally invai:iant there must be
a "zero-frequency" (w=0)("translation" or Goldstone% mode describing rigid
kink translations. In linear order this correspo? j to the lowest member of
the bound state spectrum: u; =0, f 1(x) a« g5 E (x)/dx. In addition there
may, depending on the potent.d* v(z), Bé (N _1) finite frequency bound states
(0 - Wh ¢ wgh M= 2, ..., N_) describing Harmonic kink-shape oscillations.
E.g. fo* SG or double quadrat?c (§2A) Wp = 1; for 4-four Np = 2. The remain-
ing continuum spectrum (with wave-vector k) has dispersion wf = w3 + cik®,
unchanged by the kink presence (eq. (4)). Only the asimptoticxgggavior of

fi (x) is important below: the most general form is [2] fy(x) —

A expli(kx2!(k))] + By exp[-i(kxi(k))]. H-re &(k) is a phase-shift
(ﬁepending on V(¢)). 1In fact SG and ¢-four belcng to a class [2] with refiec-
tionless scattering (By=0). This is of no physical consequence in the pre-
sent context but implies some mathematical simplicity which has made these
examples popular demonstrations. The parallels with other scattering problems
should already be evident and it will not be surprising that only asymrtotic
scattering data is important (i.e. the phase-shift), This contains informa-
tion about the bound states and also about eonservation of states. These are
not well-posed questions in a continuum; we also want to make contact with
the discrete TIO results (§3), so we consider a large system L(N = L/;) and
impose (e.g.) periodic boundary conditions on {f,(x)}. [We will use the
oontinuum fy(x), A(k), which is strictly inconsistent, but has been validated
for our purposes to leading order in £/d [25]. It Za essential to use the
discrete phonon dispersion.] We see that the phonon density of states is
changed by the presence of a kink: p(k) - pg + 8p(k); pg = L/2m, ap(k)

= (2r)-'ds(k)/dk. Conservation of states 15 assured by a form of Friedel

sum rule: Pfakic(k) = -n~'A(0+) = -Np. P = principal value.) We can view
this as "trapping" of phonon states by the kink -~ a precise mechanism for
gharing degrces of freedom in a nonlinear system.

Procedural steps to a kink gas phenomenology are now straightforward. e
will assume that kinks (and antikinks) form an ideal gas (at low T), but w»
oannot assume an independent phonon spectrum: the available phonon phase
space is unavoidably dependent on the kink presence (and velocity, via a
"Lorentz boost" - below). This precludes partition function factorization
as truly independent excl%,iions. The phonon free energy density associated
with pg is Fgy = (kBT/Zn)f_“lgdkln(mak), i.e.

F, 9228 kBT[z"zn(hmOBd/n) + (2d)7'1, . (18)



which 1s precisely bientified with harmonic oscillator pieces in the TIO
formalism (0(kgT/E(Q)): F, = AwdEq - kaTL™'tnZ, + AwdVo (see (10), * ;).

Assuming independent kinks  (i.e. additive phasePshifts), the change in phonon
free free energy density from Ap is (for Ny kinks with velocities {v4} and

N- antikink with velocities {vj}) AF({vj,vj}) =LjAF(vj) + LjAF(Vy), with the
K single kink contribution

/2
LaF(v) = kBTPf dkap(k;v)2n(Bhe,)
-m/%

n-=2
N

B
f<-d :

(49

k, T L.
' _B—P./ ak LLi¥) cn(1 4 k), (19)

2

We have kept track of "relativistjic" dependencies (y) in (19) - N.B.

t(kiyv) = L(y[k-v;bc°'2(1 + kzd:)'*]'og). In both (18) and (19) we have used
a high T Timit (kgT >> huwg but << E(K ) of the guantum harmonic oscillator
free energy expression to be consistent with the elassical TI0. For use in
§5, consider (19) for the SG ca-e. Using the well-known phase shift formula
(below), a simple contour integration yields LAF(v) = =k Tin[rhwo(l +,)].
As in quantization schemas [3], it is convenient to assoCiate LF(v) with
the kink (as a kink "self-energy"). A grand canonical partition function

G can then be constructed for ideal gascs of kinks and anti-kinks but with
renormalized encrgies:

E;(-,) = -YE,((O) + LAF(y) (2c)

We have effectively already integrated over phonon degrees of freedom. Thus,
with the independent kink assumption, G(T'L’“F'“K) = exp(-:‘-‘Fo)GKGK with

—~ B“KNK
GK(T,L,uK) = - e ZK(NK)' etc.
|E§;

L o * N
~HE (p,)| K
7(N) = (NK!)"[h"/; qufdee K pK] . (21)

q, 1s a kink position co-ordinite, p, its momentum (§2A), and i, the chemical
pétentia]. For periodic boundary coﬁditions we set y, = 4 = 0 after any
thermodynamic manipulations. Standard thermodynamic *ormJ‘E lead [2] to

explicit expresiions for, e.g., free energy, specific heat, internal energy,
kink density [nK =n, + n_|E = z(ﬁl.)"(:\mnGK/duK)(uK = 0)]. Indeed the momen-



tum integral in (21) can be performed exactly giv: .; (see also [Z€];

(1) = 200) et Q0 22 o v O] ¢ 1y (O} (22)
(0) , et
PEx ) 2020k O o 2 GO e o) e T L (e

(x_, K‘ modified Bessel functions) and F = F_ - kBTnI. Tht last resul:
ag?ees exgctly with the TI10 result (see (18)9 1o 0(=E B)) in the
par2ntheses of (22),

We could have achieved this low-T result wniverealln for class 24 L,
working with the L(¥69) only and expanding the momentur. integral to Gauiviar
order ?1.e. vEy = E'p’ + LMyv“). The universal T-dependence found by TIL
(53.1) then foflous easily fl] Indeed a general iow-7 np formula can be
obtained [7] which does not require explicit knowledge of the kink waveforr.
or small oscillations about it (i.e. asymptotic phase-chifts and kink vihra-
tion modes: there is a general cancellation [7]) - these are only needed
implicitly via an integral involving V(:) and the location of its denfneratc
minima. This result can alsc be derived within other collective mod: ‘urral-
isms (c.f. §4.2). Of course information on ihe perturbed "phonons" require:.
case-by-case small oscillation study. Having appreciated the significanie
of Ey, it is a simple textbook ideal gas calculation to introduce kink cher.i-
cal potentials and handle phenomenology for varying bLoundary condition:,
multi-kink species (&2A), and topological restrictions (e.q. kink-antilink
ordering in ;-four). Agreement with TI0 results ha. been 0'*aincd [2¢].

4.2 Equivalent Low-T Approache:

Our conclusion from &3.1 i, that static phenomenoloqy for clans A . o0 .

is complete and of little further interest. However, it 15 important to
emphasize the equivalence of all competing "collective-.o-ordinate" phenomeno-
logies [5,23,24]. An example is probably best. Class 2A cramples can be
found in several references [5.245, so we present instead a more recent eram-
ple [14] with twe zero-frequency riodes: the lsing symmetry ferromagnetic
(§82C,3.2). Of the several formalisms available we choosc a collective co-
ordinate scheme for evaluating the partition function in a steepent descent
approximation, which emphasizes the very close connections between treatments,
of "inhomogeneous" states in different problems [14] - metastable state decay,
discrdered systems, quantum tunneling, nuclear physics, nucleation theory

(see BﬁTTlK[R)- quantfzation schemes (see MAKL1), The method discussed at
Tength by Langer [23] evaluate. the classical partition function in a path
integral representation by a steepest descent calculation with Guus,ian cor-
rections. To thi, end a normal mode ("linear stability") analysis must be
performed about (nonlinear) solutions to the governing equations of motion,

as in §4.1, The original functional integration can then be replaced by
Integrations over the normal mode amplitudes. However, continuous symmetries
have to be treated specially, since large fluctuations must be accommodated
properly - e.g. rigid translations (x, in (7)). We therefore exclude zero-
frequency eigenmodes from the normal mode set and integrate separately over
the corresponding collective co-ordinate (e.g. Xg), introducing appropriate
Jacobians of transformation and ensuring orthoquality w,r.t. zero eigen-
functicns. Modifications to the fluctuution (e.q. spin-wave) spectrum due

to nonlinear excitations are explicit via effects on the density of states,

as in 84.1. Here we will make use of a slight generalization of the technique
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to 0(n) symmetry spin models [14], with the further modification that our
single-site anisotropy model has only 0(2) symmetry. Thus two continuous
symmetries (rotation /;,) and translation (xg)) must be treated specially.

First consider the single-wall sector partition function, Zj. Following
[23] we find (S = 1)

exp(N:- (A+J) - rEy) f[d.][d.‘][dSE]exp(-:--/.'.'M,dx) (24a)
exp(N-(A+2) - -Ey)(det T )((2-)"/det(:M)) (24b)

with detJ = det I; det J- (below). To derive (24) we have used the
Ising symmetry and trﬂnsformed to a local co- ordinate frame rotating with
the wail (W) profile (7): SX = Sycoswy + Srsiny, SY =5, s = _s. sin
+ S cosy. To Gauss1an fluctuat1on orﬂer we find . dxlqs(x)] -(A+J)N + EH
T*M.dx, where 2 S:o= (v 4")y 02 &, = - i(y-" )., "+-1) and the stability
operator M= -0d" /dx” ¢ 2A cosZ ‘Wix). This stabilnty operator is familiar
from the stability analysis for SG kinks [2])(c.f. §4.1). The eigenspectrun
comprises a "zero-frequency" bound state, f,, describing rigid translation,
(xo), and a contipuum of “scatterlng states"”, fp M(x )f(x? Ef(x);
Eg = 0, fy = (2d)"-sech{r/d); = 2R(1+k"d" ), = (2-)"«(V+k°d" )'vex (ibr)
e[kd + i tanh(x/d)] Av in &3, ‘, the density of scattering states is
(k) olk) + (2-)='d"(k)/dk, where .o = L/2- and the phase-shift
s(k) b/ b - 2tan="(kd), Tie last term in (24h;, representing the scat-
tering state ‘contributions, can then be evaluated after straightforward
1ntegration<. (c.f.[23]): (p-)Nsdet(:M) = exp[-.dL. (E).n(:E/2 )] - [4A. /]
*[expi=-N.n{:J/2") + N(2A/J)-:]. The second terni is “he contribution from
free spin waves (.,) (using a discrete dispersion and taking the limit d
as in §4.1) and the first term dencriben the effect of the ohp, i in the
density of states .. The secrnd term in (24b) describes contr1but1on from
the wa}l symmetry modes,. Ay in [23], det .Tx = dxo : $u/ Xp
N(2/d) . The co-ordinate transformations ahuvo were dealgned to supprv.u
the rotational symmetry about the eatvy-axis. However, the f 11 5tnh11|1y
mzirix for the wall contain. a second Zero-frequency mode g (from .S,/ )
i$ (5%, SZ)) ref1eft1nq ;hv rotational symmetry 1n spin Hpuu [14]:
det O = dig o Swodat = 20 0 daorech (x/d) 2 2-(2d). Gathering
re,ultJ. we havc (uu»prc ving the trivial qround .tate energy - N(AiJ))
Zy = axp[= N(2A/J)* = Nen(-0/2+) = vEQ)e(4=N)<(QA-/-). At Tow T (- Ly/bp)
.e. low wall density), this singlo wall sector calculation can he extendoed
to the multi-wall reqgime [14]. The total partition function 77 is obtained
from a p?rlial exponentiation of 7y, with associated free enerqgy per spin
Poer 'NThan?g

Zy

&

Fe ANLRT/Ly + kgTon(:072-) = 16A expl-:ty). (%)
fg. (?5) must be compared with the transfer inteoral result (14), (17):
F = AAkpT/Ly ¢ kBT-n(:'J/i"') = 16{e/")A ('x;)(-:-l'w). (?6)

We sec that T and T agree exactly except ior the purely numerical factor
(e/n), which can be removed by improved evaluation of tunneling inteqrals,

an remarked in §3.2. Most importantly, we sec that the dominant low-1
dependence is precisely reproduced 7 we account for all zero-frequency modes
and associated scattering state phase-shifts,
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4.3 Higher-T

Since we wish to emphasize rigorous modr phenomenology, it is important to
stress how Iittle is known beyond asymptotic low-T (except at trivial high

T. where a soliton basis is a poor starting point), both for statics and

even more for dynamics. TIO numerics are only consistency checks for plausi-
ble phenomenologies [17]. MD simulations (SCHNEIDER) provide very visual
information on collision channels for strongly nonlinear modes and motivate
approximate phenomenologies. In many cases there is little doubt about the
fundamental role of kinks or other nonlinear modes but treatment of modc
interactions 1s ad-hoc or perturbational. Of course such phenomenologies

can be valuable theoretical and experimental gquides if they are nct used
veyond their regimes of validity. For exampie, estimates f19] of kink-gnti-
kink density from appropriate correlation lengths within TI0 show how n, i-
decreased w.r.t. the low-T expression (23). Very little is known about
virial kink-kink interactions. Expans? 9 of the in-well oscillation contri-
bution E, (see £3.1) in powers of kBT/[-Q can be identified exactly term-ly-
term as an antarmonic "phonon" expansion [2]. However, this does not recog-
nize the intrinsic spatial and temporal coherence of modes such as "breathers",
even though these are very apparent in SG-like and 7-four-1ike model simula-
tions, and can be described in anharmonic cxpansions. The same probler ari.en
if perturbation crxpansions are made (as in collective-co-ordinate scheme)
about an N-kink cornfiguration [?4]. A related problem occurs in all collect-
ive co-ordinate schemi»y, [24] where kinetic and confiqurational partition
function component: are separated (as in TI0). It i then difticult tn
assign parts of Z, to individudal nonlinear modes., For low=T kinks thi- i
possible; for bredthers and similar pulse or envelope solitons it is a pro-
blea. In principle, +aaer . integrable Hamiltonian systems provide a means,
of overconing thiy difficulty and extending rigorous phenomenology to arbi-
trary T. 1In practice difficulties, remain, out we consider such system: a
major soliton SM cutting edqge:

5.  Integrable Hamiltonian System:

The beautiful mathematicy developed in the last 10 years for inteqgrable
Hamiltonians hay been introduced by McLAUGHLIN. Tor SM the major intere:!
iy that canonical transformations are prescribed to (generelized) "actron-
anqle" variablew or natural "nonlinear normal modes" - e.q. in the wen.e
that they form a complete orthogonal set. (The Hamiltonian separability
iv @ generalization of that found in .Hi..; perturbation order for a kink,
&4.1, Nonlinear modes necessarily interact, but in these wpecial canes
only through generalized p-oui?i» co-ordinates, f.e. asymptotic phase-shift.
- again qeneralizing §4.1, Despite normal-mode enerqgy separability, the
phase space for -zfondi/ modes fn affected by the local mode environment:
it is then natural to try to generalize the calculation of &4.1 by discre-
tizing the vystem and attempting to keep track of mode sharirq. We will
discuss below the problems with this gpproach for modes whouse denwity can
be larqe, but first we {1lustrate these difficulties for SG.

The inverse scattering transform (1ST) allows us to perform a canonical
transformation from {;, +,, ¢¢)} to variables effectively labeling "position”,
"velocity”, "frequency” of component nonlinear modes, For 5G, there i+ (1)

a continuous spectrum (extended modes or "radiation”) parametrized by "momer-
tum® p - hk(=+ - p - )i, (p) (density of states) (0« ,(p) - =) and :(p)
(0 <« i{p) - ?n) constitute action-angle variables as {n harmontc theory with
similar voisson brackets{c(p), ,(p*) = &(p~p"). (4i) a finite number of



12

kink-soliton variables Pj (asymptotic “momentum") and q; (initial "position")
(see §2A). (= “Pjr Q4% w) and {pJ. qj) =&y ke (111) finite nugber of
breat?as Eo-ordigates pY, qQ¥(- = - "pY, qn « &), af(0 < af - m/2), B%(

L b AN ')B a, is related to ghe in ernﬂl frequency of ihe J-th briather
(cos u) 2 wj/.os See (5)) and Fj 1is related to the phase angle of the
breather oscillation. The Hamil¥onian a;arasce as [27] (c.f. §2A)

H =fdx A(x) =-/' dp . (p)pcy ||".(",)l"

o-:ag

N N (27)
‘s ‘ 'B ‘ .
+ JZ1 [pac; + E(g)']f + E[pg'ca . Ej(-g)]' .

with N, kink solitons (and anti-solitons) and N, breathers. The final rcmark-
able feature is that all mode interactions are pair-wise additive. Thus
asymptotic phase shifts can be taken in pairs and the low-T additivity arricy -
ti o in £4,1,2 shculd extend rigorously to arbitrary T for kinks and breath-
ers. Explicit expressions for linear mode phase shifts from an isolated

binb, (kiv), (£4.1,2) or breather, “g(kivg,.p), (brlow) are available (27].

Theve circumstances make the conceptual generalization of the low-T par-
tition fun-tion calculation immediate. We discretize on a finite lenqgth L,
avew (277 »til) holds and .u'r.ew continuum phase-shifts, Indeed the calcu-
lation for kinkey was given for an arbitrary kink velocity, so that (22) is
unchanged.  Fullowing a parallel procedure for breathers we need " Fy(vg,.p).
the change in ertended ("phonun") mode free energy density due to a single
breather: Libg(vg,.p) = kgl P f_.}ldl' H(h;vu,.u).n(;h.;{. i.0,

L.'l“(vu..u) 4 Chy ow (.h.“)
bt a
o _/m. 5" avge )on(l g

- (i)

ol (PRI S I vl R
STl ) e (gl d),

where we have used 4 lorentz-hoosted phane-shift (o f. «1.0: Podb(d ) /db)
- =4 (correwponding to the removal of . linear modes per breatheF - a
breather can be viewed a4 2 kink-antikink bound state); and d'p/dk is even
in b - d'y/dk i the part of d'g/dk analytic on the :fnl h-axiy.
d?“(h,n.-u)/dl - - ad(1 - .p/.5) " (1 ¢ k'd” - 8/ ) to hr_tompnrnd with
the corresponding kink e.pression  d2 (b ,0)/dk - -2d(1 ¢ k'd") 1. (The
breather result » twiie the kink resu't a4 .y + 0.) |[leuatinq ('8), we
dofine a moiownz o ! breather cnergy (- - q-.él.d); * uinag)

l-;(llp'-") : ?lnl(:)' - ?kﬂhlll:-ll."(ﬂ' )] (1)

to be compared with (:0), ewpecially as oy ¢ 0, Using asymptotic phase-
shift additivity and Hamiltonian sepnrabl?lty. we can now oxtend (1) by
incTuding an extra grand canonfcal partition function for breathers
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o N
Gg(T,Lug) = X Eo exp(fiughg ) Zg(Ng) with Zg(Ng) = (N!)7'Zp B and

B
« L owe ane'®
- *
ZB z h 7./.:'de-/0.qu A dLB A ds EKP['f‘.EB(pB,uB)] giving

T _2ep(0).
Z B o= !' M ( ] 1 1 . j
B Td K 0 . (’7_]): “_,.:')4

(Note how the phase shift effects cancel powers of h in (21) and (30), a
feature lost 1f we use purc ideal relativistic gases.) We presented this
calculation to illustrate some characteristic problems (below)., Note already
the renormalization of Ey (eq. (29)) even as wy -+ ., the harmonic limit,
This 1imit (v, = w3 1, » 0) is the source of mdny r@lated difficulties:

(30) can be eea1uaged tediously in terms of modified Bessel fns., with low-T
expansion

(0) ‘ 1 (0).y
AR I -1 - k(2.0 ")
R AR S B B (7)) oy, fy BERe
B ) o) g fe B
1 (1ar,7)
The reader can check the several unhappy features in (31): for instance,
the breather density n,(I) = Z,/L (assuming ., = 0), and the free energy

density is F = ro - kpTn, = k,Tn,, ta)he comparedqwitb)thc TIO result for
SG[2]: F = F_ "k Tn$ -(kBT/ﬂd)?rL k')7 +0((k,T) /€8, "), Even more indica-
tive is the e9011c9L diverienes of the remaining 1ntegra Ongr any finite T)
in (31) a8 w, + w (dominantly from .,/. . 1 - g(k,T/E ¥ )" ). Thesc prob-
lems arise f?om olir 1ack of control ovBr Rode con€erVation and taking a con-
sistent thermodynamic 1imit (below). They are quite generic to gapless
envri:ye solitons: for instance, we have found the naum difficulties in
analyzing o/areioal SM for the cubic Schrédinger equation or the isotropit
continuum ferromagnet (2C), for which mode-sharing from asymptotic phase-
shifts can also be establishcd (sec also [2B]). Slightly more control may
be possible for ;i/a solitons as in the Toda lattice, even though they alwo
have a gapless energy spectrum. For instance YOSHIDA [22) has used in: /i
chain action-angle variables (for “solitons" and "ripples") on a finite chain
and imposed periodicity and mode conservation by hand (restricting ripple
wave-vectorss. In this way he finds agreement with TIO results at /[ T,
Here again, however, controlled use of phase-shift information is more appro-
priate (work in progress) as well as integrahility structure for the fin !,
discrete chain (below). For kink solitons (1.e, finite encrgy gap) we saw
(§4.1) that exact agreement with TIO could be obtained at /ow T. In view
of SG integrability, 1t might be thought that result (22) would give an
exact kink description at all T. In fact comparing with the predicted [19])
nz from correlation lengths in T10, we find that (22) 1s a slightly wore:
prediction than the asymptotic formula (23). This secems to arque for the
fmportance of non-trivial mode interactions on a discrete SG chain with
periodic boundary conditions. [We note in passing, however, that it is
advantageous [29‘ to use [ﬁ (eq. (?0)) to construct an "tdeal gas" veloc ity
distribution - as used in phenomenologlical structure factor models,]

Ne now briefly summarize the difficulties of using available IST mathema-
tics to construct a classical SM (see also [?]). They are all corseauences
of a gapless spectrum or of high T,
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(1) we have implicitly assumed above that there is no special distinction
of multiple occupations of the same "soliton stata" (specified by positions
of poles and pairs of poles in the eigenvalue plane in inverse scattering
theory). In general this is untrue which will be important for high soliton
densities (from pulses, envelopes or, at high 7, kinks).

(11) The possibility of arbitrarily low energy breathers and correspondingly
large densities, and spatial extensions' means that consistent mode counting
Is more sensitive than for a low density of local kinks. The canonical
action-angle variables and phase-shifts used above were strictly val‘d for

a continuum system with decayiny boundary conditions. The use of th2se data
for a finite discrete system with periodic boundary conditions (as used for
T10) 1s clearly uncontrolled as is the process of taking the thermodynamir
limit. (Finite gap, localized kink excitations were insensitive to these
concerns,) One can try to enforce mode conservation and soliton size cut-
off in approximate ways, but the moi;t desirable route is to construct SM
with IST data for a finite, discre.e, integrable system with, e.g., periodic
boundary conditions, and finally take the thermodynamic limit. This is on-
going work: IST status for such problems is summarized by McLAUGHLIN. The
Toda lattice is especially attractive as well as some discrete spin models
related to discrete generalizations of non-linear Schrdcinger.

(ii1) Claceical SM was implied in TIO by the separation Z = 2,Z.(§3.1). It
was implemented in our nonlinear phrnomenology by the use of high-T (kBT--.O)
harmonic phonon free energy expressiuns (e.g. (18)). There is some inconsis-
tency therefore in our use of a purely claceicdi breather spectrum, especially
for low energy (extended) breathers with Ep = h.,. (This problem is intrinsic
to the dual particle-oscillator character of breathers and related solitons.)
In particular the quritir Greather spectrum is diaercte. This is often not
serious for applications but 7a '~r low-energy breathers since the [ ¢
energy breather is physically equivalent to the quantum harmonic oscillator,
1.e. Klein-Gordon quantum, (c.f. the classical spectra (§2A).) Irdeed any
breather may be viewed as a multi-magnon (or phonon, etc.) bound rtate:
breathers and solitons exhaust the quantum SG spectrum. While it is a tech-
nically challenging problem to construct a truly classical SM (for arbitrary
T), this was not really achieved even for kirks (%4.1) and physical concern
necessarily centers on quumtim SM from which a high T (classical) limit can
be extracted 1f desired. It is therefore our opinion that a major effort
should now be devoted to quantum SM of "woliton" systems. Quantization
schemes for nonlincar objects will be reviewed separately by MAKI: somce
uscful progress has been made in constructing a quantum SM for . -four, SG

and double quadratic, etc. (%2AR) using nonlinear gencrulizations (analogou:
to classical collective co-ordinate manipulations, §4) of conventional . »-
turbative functional integral formalisms. An alternative approach is to
concentrate on fully Zntegumihle quaitws Hamiltonians (including SG), particu-
larly motivated by connections with k-the amaats Viterature [30]: see also
BONNER, EMERY, MCLAUGHLIN. We do not have space to describe this philosophy
here: details will be published elsewhere. The basic ingredients are [30]
(1) the unification of the majority of soluble many-body models as integrable
quantum Hamiltonians with explicit conncctions to a generalized liethe ansatz;
(11) physical understanding of elementary "soliton" excitations from integra-
ble elaneicu! Hamiltonian predecessors [12]; (111) use of quantum SM from
Bethe ansatz literature (e.q. for the spin-; Ising-XY-Heisenberg model, with
connections to both SG-11ke and Schrbdinger-1ike integrable Hamiltonians).

6. Outlook

We hope that the central role of solitons in large ar - of 1-D physics will
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be apparent from other talks at this Meetiny - e.g. AXE, BAK, BONNER, EMERY,
RICE, SCHRIEFFER, STEINER, as well as contributions to the soliton session,
As far as statistical properties are concerned, we suggest among important
future areas: (1) exploitation of quantum integrability, the Bethe ansatz
and soluble model equivalences; (i1) study of impurity effects on soliton
SM (classical and quantum); (i11) study of turbulent transitions and fully-
developed turbulence ir driven, damped soliton systems with thermal noise

(having potential lessons for both solid state and fluid turbulence theory).
These are all on-going projec:s.
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